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Abstract

The topic of this paper is the analysis of prestressed concrete beams under quasistatic loading. Therefore, a coupled

element free Galerkin finite element approach is chosen. The concrete is modeled with particles and the reinforcement

with beam elements. For the steel, an elastoplastic constitutive law with isotropic hardening and a tension cutoff is

applied. The concrete is modeled via a continuum damage model, where an anisotropic tensile damage variable is used

to capture the appropriate behavior of concrete in tension. Since the interaction between the concrete and the rein-

forcement is crucial, the bond behavior cannot be ignored. The relative displacements between the reinforcement and

the adjacent concrete particles are calculated. The resulting bond forces tangential and normal to the reinforcement are

applied onto the elements and the adjacent concrete particles. The numerical results are compared with two experiments

with different failure mechanisms and agree well.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

For the development of an uniform European norm, the behavior of prestressed concrete beams became

of interest, especially for those without stirrup reinforcement. In this article we present a technique to study
the behavior of such beams within the framework of a numerical analysis. Other approaches for analyzing

and designing prestressed concrete structures are given by Liang et al. (2001, 2002). The problem is treated

in two dimensions (plane stress). Hereby, the initiation and propagation of cracks in concrete is crucial.

Since finite element (FE) and finite difference methods (FDM) have had difficulties in modeling cracks, we

choose a meshfree method, the element free Galerkin (EFG) method with nodal integration (see Beissel and

Belytschko, 1996), and an explicit time integration scheme. EFG with nodal integration is similar to the

moving least square particle hydrodynamics (MLSPH) method (see Dilts, 1999) which is an improvement

of the smooth particle hydrodynamics (SPH) method developed by Lucy (1977) and Gingold and
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Monaghan (1977). We prefer a meshfree approach instead of finite elements because meshfree methods are

better suitable to describe continuum models in many aspects as isotropy, smoothness, continuity, nonlocal

character in interpolation, flexible connectivity and adaptive refinement (see also Belytschko and Lu, 1995;

Belytschko et al., 1996a,b; Liu et al., 1995, 1996b and Liu et al., 1996a). Especially in crack propagation
problems where finite elements are bounded to a specific topology, computational expensive remeshing

algorithms become necessary. Adaptive refinement approaches can easily be incorporated in meshfree

methods which make meshfree methods attractive for this class of problems.

A combined damage plasticity constitutive law is applied, which models the anisotropy of concrete in

tension by a damage vector. The crack is represented by a damage zone. As shown later, it is sufficient

enough to reproduce the essential failure mechanisms observed in experiments. The reinforcement is treated

with beam elements and an elastoplastic model with a strain based tension cutoff, so that the failure of the

reinforcement can be captured, too. In some experiments, especially when the beam is loaded close to its
support, an anchorage failure was observed in the experiments. Therefore, the bond model becomes crucial.

A procedure is proposed to describe the interaction of the reinforcement with the concrete particles.

Finally, our numerical results are compared with the results of two experiments with different failure

mechanisms. We show, that our model is able to capture the substantial failure mechanisms although

improvements are desirable in certain cases.
2. The constitutive model for concrete

The constitutive law for concrete is a coupled damage-plasticity model as proposed by Schmidt-

Hurtienne (2001). According to Fig. 1, the strain rate tensor _�� is decomposed in an elastic _��e, a damage _��d
and a plastic part _��p. The rate equations for strains and stresses are given by
_�� ¼ _��e þ _��d þ _��p ¼ _��ed þ _��p ð1Þ
rr
e � rr ¼ E : _��� E : _��e ¼ �rr

d � rr
p ¼ E : _��d þ E : _��p ð2Þ
where the elastic and the damage strain rate is combined to _��ed and rr, rr
e , r

r
d and rr

p are frame indifferent

stress rates.
Fig. 1. The constitutive law for concrete.
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The damage loading surface Fd ¼ Fd½�e;jd� ¼ 0 is formulated in the strain space and is decoupled from

the plasticity loading surface Fp ¼ Fp½�; jp� ¼ 0, where jd is the equivalent damage strain of the elastic strain

tensor �e and jp the equivalent plastic strain. In contrast to the usual theory, the plastic flow rule does not

determine the relaxation stress _rrp but directly the plastic strain increment _��p
_��p ¼ _kkpmp; _rrp ¼ � _kkpE : mp ð3Þ

_rrd ¼ _kkdmd; _��d ¼ � _kkdE
�1 : md ð4Þ
where _kkp and _kkd are the plastic and the damage multipliers which determine the size of the plastic strain and

damage strain increment, respectively, and mp and md give the direction of the plastic strain and damage

strain increment, respectively. Loading is distinguished from unloading by the Kuhn–Tucker-conditions

F 6 0, _kkP 0, F _kk ¼ 0. From the differential consistency condition
_FFp ¼
oFp
o�

: _��þ oFp
okp

_kkp ¼ np : _��� Hp
_kkp ¼ 0 ð5Þ

_FFd ¼
oFd
o�e

: _��ed þ
oFd
okd

_kkd ¼ nd : _��ed � Hd
_kkd ¼ 0 ð6Þ
the multipliers are gained and set in the flow rule, Eqs. (3) and (4)
_��p ¼
mp � np

Hp

: _�� ¼ �Tp : _�� ð7Þ

_rrd ¼
md � nd

Hd

: _��ed ¼ Td : _��ed ð8Þ
where np and nd are the normals on the plastic and the damage surface, respectively. If n ¼ m, we talk about

an associated flow rule. Finally, a term for the tangential stiffness is obtained:
Et ¼ ðEþ TdÞ : ðIþ TpÞ ð9Þ
where I is the fourth order unity tensor and Tp and Td are explained in Eq. (7) and (8), respectively. The

stresses are updated by
rr ¼ Et : _�� ð10Þ

Now, all equations are established which have to be supplemented by functional relations.

Different failure surfaces for concrete as e.g. the Ottosen Four-Parameter model (see Ottosen, 1977), the

Hsieh–Ting–Chen Four-Parameter model (see Hsieh et al., 1982) or the Willam–Warnke Five-Parameter

model (see Willam and Warnke, 1975) can be found in the literature (see also Chen, 1994). The form of the

failure function is determined by experimental data. The reports by Kupfer et al. (1969) and Tasuji et al.

(1964) cover almost the full range of the biaxial stress states. For triaxial stress states, results by Mills and
Zimmermann (1970) and Launy and Gachon (1970) are mentioned. According to Schmidt-Hurtienne

(2001), the Hsieh–Ting Chen failure surface Fd;c for compressive loading is formulated in the strain space

and is given by
Fd;c ¼ c1J e
2 þ jd;c c2

ffiffiffiffiffi
J e
2

p�
þ c3�ðaÞe;max þ c4Ie1

�
� j2

d;c ¼ 0 ð11Þ
while for tensile loading, Fd;t is
Fd;t ¼ 0:5�þe : �þe � 0:5j2
d;t ¼ 0 ð12Þ
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where c1; . . . ; c4 are parameters of the damage surface, Ie1 is the first invariant of the elastic strain tensor �e,
J e
2 the second invariant of dev�e, �

ðaÞ
e;max the maximum ath characteristic value of �e and �þe the positive

projection of the elastic strain tensor, see Eq. (15). The parameters c1–c4 are calibrated at standard test so

that the biaxial failure surface measured by Kupfer et al. (1969) is reproduced (see Fig. 2). It should be
mentioned that we are also able to reproduce triaxial stress states measured by Mills and Zimmermann

(1970) as shown in Schmidt-Hurtienne (2001) and Rabczuk (2002). Anisotropic tensile behavior is dis-

tinguished from isotropic compressive behavior if the maximum elastic tensile strain is greater than the

absolute value of the smallest compressive strain:
�ðaÞe jmax �ðaÞe

�
> jmin �ðaÞe j

�
! tension ð13Þ
The plastic surface Fp is based on the positive projection of the elastic strain tensor according to the rule

that microcrack-damage develops perpendicular to the direction of the largest principal strain. The plastic

surface Fp is
Fp ¼
1

2
�þe : �þe
�

þ cc��e : ��e
�
� 1

2
j2
p ¼ 0 ð14Þ
where cc is the cross-effect constant (see also Ortiz, 1985) with
�þe ¼ Pþ : �e; ��e ¼ �e � �þe ð15Þ
Fig. 2. Biaxial failure surface of concrete.
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and
Pþ ¼
X
a

Hð�ðaÞÞdðaÞ � dðaÞ � dðaÞ � dðaÞ ð16Þ
where H is the heavyside function and dðaÞ is the characteristic vector of �e. For the theoretical maximum of

cc ¼ 1:0, we obtain isotropic plasticity (see Fig. 3). For a more realistic value of cc ¼ 0:08, similarities to the

failure surface of concrete can be seen as shown in Fig. 3. The damage variable bDD depends on the equivalent

damage strain jd of the elastic strain tensor. The damage evolution is described by a Weibull distribution:
bDDðjdÞ ¼ 1� e
� jd�e0

ed

� �gd

jd P e0 and bDDðjdÞ ¼ 0jd < e0 ð17Þ

with e0, ed and gd as material parameters, so that uniaxial compressive and tensile tests are reproduced as
shown in Eibl et al. (2001). Zheng (1996) measured the tensile and compressive strengths of pre-damaged

concrete specimens. His study showed that the tensile strength of the compression pre-damaged specimen is

lower than that of the virgin specimen. The same effect was observed for the compressive strength with

tension pre-damage. However, the effect was by far smaller. Especially in wave propagation problems and

under cyclic loading conditions, this effect cannot be neglected. To account for this phenomenon, isotropic

compressive damage under tensile loading conditions is reduced by a factor rc, so that we were able to

reproduce the results obtained by Zheng (1996):
Dtþdt
c ¼ maxððbDDðjd;cÞ;Dt

cÞ ðcompressionÞ ð18Þ

Dtþdt
c ¼ maxððbDDðjd;c=rcÞ;Dt

cÞ ðtensionÞ ð19Þ

where the subscript �c� indicates compression. The hardening modulus in compression is
Hd;c ¼
oFd;c
okd

¼ oFd;c
oDc

¼ oFd;c
ojd;c

� ojd;c

oDc

ð20Þ
Fig. 3. Plasticity surface of concrete for two different cross constants cc.
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The evolution of the anisotropic (tensile) damage tensor Dt is defined in the direction of the positive

principal strain. The damage state is stored in form of a complementary continuity tensor a. Hence, the

damage tensor in the direction of the principal strain a is
Dt;ðaÞ
t ¼ 1� dðaÞ � a � a � dðaÞ ð21Þ
New tensile damage occurs in the direction of the positive principal strain, weighted with a factor re to take

into account the direction where the maximum damage increases:
Dtþdt;ðaÞ
t ¼ maxðbDDðjd;t � reÞ;Dt;ðaÞ

t Þ ðtensionÞ ð22Þ
with
re ¼
h�ðaÞe i

max �
ðaÞ
e

ð23Þ
where h i are the McAuly brackets and the subscript �t� indicates tension. According to Eq. (19), tensile

damage can occur under compressive loading as well:
Dtþdt;ðaÞ
t ¼ max bDDðmax½h�ðaÞi=rt; jd;t=rt�Þ;Dt;ðaÞ

t

� �
ðcompressionÞ ð24Þ
The reduction factor rt is far smaller than rc. The deformation rate for the tensile damage according to Eq.

(24) is
_DDt ¼
X
a

_DDðaÞ
t dðaÞ � dðaÞ ð25Þ
The principal direction of the rate of the tensile damage coincides with the one of the elastic strain tensor,

but it is not necessarily the case for the total tensile damage tensor, since it depends on the complete loading

history. The hardening modulus Hd from Eq. (6) is
Hd;t ¼
oFd;t
okd

¼ oFd;t
oDðaÞ

t;max

¼ oFd;t
ojd;t

� ojd;t

oDðaÞ
t;max

ð26Þ
A detailed derivation can be found in Schmidt-Hurtienne (2001). From Eq. (25), the continuity rate can be

computed by
_aa ¼
X
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� _DDðaÞ

t Þ
q

dðaÞ � dðaÞ ð27Þ
The calculation of the integral of Eq. (27) to obtain the total continuity tensor is not permitted, since under

certain circumstances continuities <0, that means damages >1 can occur. Therefore, the continuity tensor a
is computed by
a ¼
Y
t

dRa ð28Þ
with
dRa ¼
X
a

atþdt;ðaÞ

at;ðaÞ
dðaÞ � dðaÞ ¼

X
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dtþdt;ðaÞ

t

1� Dt;ðaÞ
t

s
dðaÞ � dðaÞ ð29Þ
Eq. (29) guarantees, that every damage increment in direction of the current principal strain reduces the

continuity, but simultaneously the principal values of a cannot be negative. The relation between the in-
ternal plastic variable qp and the plastic equivalent strain jp is described in Eq. (30):
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qpðjpÞ ¼ cpðjp � edÞ 1

 
� e

� jp�ed
ep1

� �!
e
� jp

ep2 8jp P ed ð30Þ
with material constants ed, ep1, ep2 and cp. Plastic deformations will occur after the initiation of tensile

cracks. Since ed corresponds approximately (for gd ¼ 1 exactly) to the strain where the tensile strength in

the uniaxial stress–strain curve is reached, the physics are simulated correctly. The parameter cp determines

the relation of the internal plastic variable qp to the equivalent plastic strain jp and must be chosen <1.

Otherwise, the plastic strain tensor maybe larger than the total strain tensor. The parameter ep1 determines
the accumulation and ep2 determines the decay of the internal plastic variable at large deformations. As

shown in Rots (1988) and Weihe (1995), the decay parameter reduces the shear locking under mixed mode

failures. Note that the shear locking effect in meshfree methods is by far smaller than in finite elements. The

hardening modulus Hp is
Hp ¼ � oFp
okp

¼ � oFp
ojp

� ojp

oqp
� oqp
okp

¼ jp �
ojp

oqp
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þe þ cc��e Þ : ð�þe þ cc��e Þ

q
ð31Þ
Now, the normals onto the loading surfaces can be computed which are necessary to obtain the tangential

stiffness. The normal nd of the damage surface is obtained by taking of derivatives Fd with respect to the
elastic strain tensor �e as
nd;c ¼ c1

�
þ jd;cc2

2
ffiffiffiffi
J2

p
�
dev�e þ jd;cðc3dðaÞ � dðaÞ þ c4IÞ ð32Þ
nd;t ¼ �þe ð33Þ
The normal of the plastic surface is obtained by derivating Fp with respect to the elastic strain tensor:
np ¼
oFp
o�

¼ oFp
o�þe

:
o�þe
o�

þ oFp
o��e

:
o��e
o�

¼ �þe þ cc��e ð34Þ
With the assumption of an associated flow rule, that means md ¼ nd and mp ¼ np, all variables are known

for an incremental stress update.

In the transition to the strain softening domain, the sign of the tangential stiffness changes. The type of

the partial differential equation (PDE) changes its type from the hyperbolic into eliptic. In this case we talk

about a standing wave. The information cannot be propagated any more, which leads to a localization and

mesh dependence. As a regularization technique to avoid mesh-dependencies, the static constitutive model

is extended with a viscous part, so that the static damage evolution is decayed:
bDDtotal ¼ bDDstat � bDDdyn ð35Þ
with
bDDdyn ¼
Z t

s¼0

obDD
os

hðt � sÞds ð36Þ
The history function hðt � sÞ can be chosen as an exponential function which decays monotonously from 1

to 0:
hðt � sÞ ¼ e�
t�s
h ð37Þ
where s indicates the time of cracking and h should be chosen small (<0.07 ms). This technique is able to
avoid mesh dependencies as proven by Schmidt-Hurtienne (2001).



Table 1

Material parameters of the constitutive model for concrete

c1 ¼ 0:0123424 c2 ¼ 0:025166 c3 ¼ 0:782058 c4 ¼ 0:346384

e0 ¼ 2:5� 10�5 ed ¼ 2:2� 10�4 gd ¼ 2:5 E0 ¼ 29; 000 MPa

m ¼ 0:22 ep1 ¼ 1:1� 10�3 ep2 ¼ 0; 4 cp ¼ 0:9

cc ¼ 0:08 . ¼ 2:4� 10�3 g/mm3 rc ¼ 20 rt ¼ 1:2
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All material parameters for the simulations are listed in Table 1 where E0 is the initial elastic modulus, m
the poisson ratio and . the density. The parameters are calibrated at standard tests as uniaxial and biaxial

compressive and tensile tests, also under cyclic loading (see Eibl et al., 2001), as mentioned above. Note that

with this constitutive law and the same parameters (for the corresponding type of concrete) we were able to

reproduce a wide range of experiments of concrete structures subjected to quasistatic and dynamic loading,

see e.g. Schmidt-Hurtienne (2001) and Rabczuk (2002).
3. The reinforcement

There are several approaches to describe the reinforcement in a numerical analysis. The simplest way is

to smear the reinforcement within one element or a certain number of particles, respectively. This procedure

does not seem to be appropriate for our interests. Hence, we have chosen to model the reinforcement

explicitely, so that an interaction between the reinforcement and the adjacent concrete particles is possible.

The reinforcement is discretized with beam elements. As already mentioned, an elastoplastic constitutive

law with isotropic hardening and a tension cutoff is applied (see Chen, 1994). Therefore, the tensile stresses
are set to zero if the effective plastic strain exceeds a value of �p;eff ¼ 0:2 according to the specifications of

the tension wire producer. For the first beam, the yield point of the tension wires is 1470 N/mm2, the tensile

strength is 1670 N/mm2, the Young�s modulus is 200,000 N/mm2 and the density is 7.8 · 10�3 g/mm3. For

the second beam, the yield point of the tension wires is 1420 N/mm2, the tensile strength is 1570 N/mm2.

The Young�s modulus is 195,000 N/mm2 and the density is 7.8 · 10�3 g/mm3.
4. The bond model

Bond models in a numerical analysis are usually proposed at three different scales. At the smallest scale,

the �rib-scale�, the geometry of the surface structure of the bar is modeled explicitly. These models are well

suited to study the basic behavior of the interface between the concrete and the reinforcement. Because of

the high computational effort they are not well suited to model the behavior of a complete reinforced

concrete structure.

In �bar-scale� models, the interface is idealized by a cylindrical shape. The local mechanical interaction at

the �bar-scale� must be accounted for indirectly. The �bar-scale� models can be classified into two groups, see
Cox and Herrmann (1998):

(1) The mechanical interaction is represented by an increased compliance of the concrete matrix adjacent

to the bar.

(2) The mechanical interaction is represented by an increased compliance of the concrete-bar interface.

The first approach is simpler, but does not model the wedging effects of the ribs properly. Therefore it is

only well suited to capture a pullout failure. The second approach can generally produce both, a pullout
and a splitting failure.
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The third type of bond model is the so called member scale model. The reinforcement is usually dis-

cretized via a discrete, embedded or smeared model, but other novel approaches to model components have

also been developed. Typically, at the member scale model, the reinforcement is treated as a one-dimen-

sional element, and bond laws have been limited to single-stress models and are not well suited to reproduce
the complicated appropriate bond behavior in certain cases.

As mentioned before, two types of bond failures have to be distinguished, a pullout failure, where the

bond strength in the contact zone is exceeded, and a splitting failure which is often caused because of an

insufficient concrete cover throughout. Direction changes of the reinforcement promote the latter failure

mechanism, too. For our problems, the prestressed concrete beams, where the reinforcement is arranged

straight in the concrete, the splitting failure is less significant. A bond model by Akkermann (2001), a

simplification of the Den Ujil and Bigaj (1996) model, is adopted. It seems to describe all relevant bond

behaviors for our purposes.
The forces are transmitted in the concrete by the ribs of the prestressing. This causes cone-shaped radial

cracks in the concrete. In the bond model, an initiation of three radial cracks as shown in Fig. 4 is assumed.

The most important parameter is the quotient n ¼ ceff=D of the concrete cover throughout ceff and the

diameter D of the rod. If the radial cracks pass through the complete concrete cover throughout, a sudden

failure takes place. The bond model is formulated in terms of the radial stress-radial strain relation. This

curve can be split into three domains. The first domain describes the nonlinear material behavior caused by

the crack propagation, the second domain is the linear softening domain and the third one is characterized

by the residual strength.
Domain 1: 06 �r;rs 6 �r;rs; max
rr;rsð�r;rsÞ ¼ rr;rs; max

kg� g2

1þ ðk � 2Þg ð38Þ
with
k ¼
Er�r;rs; max

rr;rs; max

g ¼ �r;rs
�r;rs; max
and the maximum radial stress rr;rs; max and strain �r;rs; max, respectively, at failure (see Akkermann, 2001)
rr;rs; max ¼ 2n0:88fct; �r;rs; max ¼ 4:2n1:08
fct
E0

ð39Þ
Fig. 4. Bond model with three radial cracks in the concrete.
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where E0 is the Young�s modulus, fct the tensile strength of concrete, n ¼ ceff=D where ceff the concrete cover
throughout and D the diameter of the rod. The initial stiffness in radial direction is
Er ¼ E0

ðceff þ D=2Þ2 þ D2=4

ðceff þ D=2Þ2 � D2=4

 
þ m

!�1

ð40Þ
Domain 2: �r;rs; max < �r;rs 6 �r;rs;res
rr;rsð�r;rsÞ ¼ rr;rs; max 1

�
� 1� w
�r;rs;res � �r;rs; max

ð�r;rs � �r;rs; maxÞ
�
; w ¼ 0:2 ð41Þ
with
�r;rs;res ¼ ð2nþ c0=DÞ
fct
E0

; c0 ¼ 0:27m ð42Þ
Domain 3: �r;rs;res < �r;rs
rr;rsð�r;rsÞ ¼ rr;rs; max ¼ wrr;rs;res;w ¼ 0:2 ð43Þ
The bond stresses and the slip has to be defined parallel to the reinforcement. The transmission of the forces

from the reinforcement into the concrete can be considered as shown if Fig. 5. The radial strains can be
computed from the slip dp by
�r;rsðdpÞ ¼
2dp
D

tan#b with #b ¼ 0:1fc ð44Þ
where fc is the compressive strength of the concrete. The bond stress is coupled with the radial stress by a

fictive friction
sp ¼ cotUrr;rs ð45Þ

The friction angle depends on the slope of the circumferential cracks and is approximated by cotU ¼ 1, see

Den Ujil and Bigaj (1996). Hence, the bond slip relation is completely determined for a splitting failure. The

parameters for the bond model can be found in Table 2.

For a pullout failure, the slip depends on #b, which decreases with increasing damage of the concrete

since the shear resistance of concrete will decrease, too. Finally, the radial strain can be formulated as

function of the slip dp and the steel strains �s
�r;rs ¼
f ðdp; �sÞ

rs
ð46Þ
Fig. 5. Bond model.



Table 2

Material parameters of the bond model

fct (MPa) fc (MPa) ceff (cm) D (mm)

Beam I 2.83 )44.5 4.5 7.0

Beam II 2.83 )44.5 3.5 12.0

Fig. 6. Bond stress-slip relation for (a) splitting failure, (b) pullout failure.
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The function f ðdp; �sÞ is divided into four parts. A detailed description can be found in Den Ujil and Bigaj

(1996). The bond stresses are computed depending on the relevant failure mechanism. Fig. 6a shows the
bond slip relations for a splitting failure, Fig. 6b for a pullout failure. For the splitting failure, tan#b is

constant. Hence, the radial strains are linear dependent on the slip. For the pullout failure, the radial strains

are nonlinear dependent on the slip. If the radial stresses are smaller than the maximum slip stresses

rr;rs; max 6 sp;max with sp;max ¼ 5fct, a splitting failure takes place, otherwise a pullout failure occurs. The

radial strains are calculated according to Eq. (44) or (46) to the corresponding failure mechanism. Once the

radial strains are computed, the radial stresses are obtained, which are equal to the bond stresses. The bond

stresses are applied to the reinforcement elements and to the adjacent concrete particles. An approach is

proposed in Section 5.3 to compute the relative displacements and the slip, and to apply the bond stresses
onto the concrete and the reinforcement.
5. Numerical techniques

5.1. The EFG method for modeling the concrete

The EFG method was developed by Belytschko et al. (1994) and frequently applied to crack propagation

problems, see Belytschko (1995) and Belytschko and Lu (1995). Usually, the integrals are evaluated by a

Gauss quadrature based on a background mesh. A nodal integration was first introduced into EFG by
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Beissel and Belytschko (1996) and is similar to the MLSPH method developed by Dilts (1999). The EFG

approximation can be written as
uhðxÞ ¼
X
I

pIðxÞaðxÞ ð47Þ
where p are base functions which are chosen as pðxÞ ¼ ð 1 x y Þ 8x 2 R2. With the choice of linear base

functions, linear completeness is fulfilled, which is desirable since it guarantees the conservation of linear

and angular momentum as shown by Belytschko et al. (1998). The constant aðxÞ has to be chosen to
minimize the functional
J ¼
X
J

pTðxJ ÞaðxÞ
�

� uJ
	2
W ðx� xJ ; hÞ ð48Þ
where W is a weighting function which determines the influence of the central particle x to its neighbor-

hood, xJ are the coordinates of the neighbor particles and h is the interpolation radius which determines the
size of the domain of influence. Minimizing Eq. (48) with respect to a leads to the final approximation
uhðxÞ ¼
X
J

UJ uJ ð49Þ
which is identical to the finite element interpolation. Since the Kronecker delta property is not fulfilled, Eq.

(49) is only an approximation and not a true interpolation as in finite elements. The EFG shape functions
are
UJ ¼ pðxÞT � AðxÞ�1 � pJðxÞW ðx� xJ ; hÞ ð50Þ

AðxÞ ¼
X
J

pJp
T
J W ðx� xJ ; hÞ ð51Þ
Crucial is the momentum equation which is given in the weak form by
�
Z
X
rdv : rdXþ

Z
X
dv � ð.b� ._vvÞdXþ

Z
Ct

dv � �ssdC ¼ 0 ð52Þ
where dv are the test functions and v are the trial functions, which are identical in a Bubnov Galerkin

method. The integrals are evaluated by a nodal integration (see Beissel and Belytschko, 1996)
Z
X
f ðxÞdX ¼

X
J

f ðxJÞDVJ ð53Þ
where DVJ designates the particle volume.

5.2. A FE beam element to model the reinforcement

The reinforcement is discretized with beam elements. Beam elements are preferred instead of truss ele-

ments since truss elements can be loaded only in axial direction and the bond model would have been

restricted to one dimension.

5.3. An approach for modeling the bond behavior

The relative displacements D between the reinforcement and the adjacent concrete particles is the starting

point for the coupled EFG/FE approach. The relative displacements are
D ¼ ufe � umls ð54Þ
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The displacements have to be transformed into one common local coordinate system. Here, we have

chosen the local coordinate system of the beam elements. If the beam element is sloped with an angle c
against the x-axis, all necessary particle data has to be transformed with the matrix T into the local

coordinate system:
T ¼ cos c sin c
� sin c cos c


 �

After the slip is computed, the bond model can be applied. The traction �ttb obtained from the bond model

has to be applied onto the FE and the particle domain. Therefore, we have to rotate the traction with the

transformation matrix T back into the global coordinate system. It should be mentioned that in our

examples, the beam elements are arranged along the x-axis and since the deformations are very small, the

transformation does not have a large influence.

Crucial for the coupling approach is the momentum equation which is given in the strong form by
.€uu ¼ rrþ .b ð55Þ
where . is the density, €uu the acceleration, r the Cauchy stress tensor and b are the body forces. The

boundary conditions are
n � r ¼ �tt on Ct

u ¼ �uu on Cu

�ttmls
b ¼ �ttfeb on Cb

ð56Þ
Ct and Cu are the boundaries either in the particle domain or in the element domain, otherwise the mls and
fe superscripts indicate the particle or element domain, respectively. Cb is a common boundary of the

particle and the element domain. On the boundary Cb, equilibrium between the bond traction is necessary,
�ttmls
b ¼ �ttfeb as shown in Eq. (56). Including the traction from the bond model, the momentum equation in the

weak form can in general be written as
Z
X
.dv � €uudXþ

Z
X
rdv : rdX�

Z
X
.dv � bdX�

Z
Ct

dv ��ttdC�
Z
Cb

dv ��ttb dC ¼ 0 ð57Þ
where the last term on the LHS of Eq. (57) has to be added in the particle domain and subtracted in the

element domain. Hereby, dv 2 V0 are the test functions and v 2 V1 are the trial functions. The spaces V0 and
V1 are as follows:
V1 ¼ vjv 2 H 1ðXÞ; v
�

¼ �vv on Cu

�
ð58Þ

V0 ¼ V1
\

dvjdvð ¼ 0 on CuÞ ð59Þ
With the test and the trial functions in the particle domain (x 2 Xmls)
dvhðxÞ ¼
X
J

Umls
J ðxÞdvmls

J ð60Þ

vhðx; tÞ ¼
X
J

Umls
J ðxÞvmls

J ðtÞ ð61Þ
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the momentum equation in the weak form can be written as
�
Z
Xmls

rUmls
J � rdXþ

Z
Cmls
t

Umls
J
�ttdCþ

Z
Xmls

.Umls
J bdXþ

Z
Cb

Umls
J
�ttb dC

¼
X
I

Z
Xmls

.Umls
J ðxÞUmls

I ðxÞdX dvI

dt
ð62Þ
For the FE region (x 2 Xfe), the momentum equation is
�
Z
Xfe

rUfe
J � rdXþ

Z
Cfe
t

Ufe
J
�ttdCþ

Z
Xfe

.Ufe
J bdX�

Z
Cb

Ufe
J
�ttb dC ¼

X
I

Z
Xfe

.Ufe
J ðxÞUfe

I ðxÞdX
dvI

dt
ð63Þ
with
dvhðxÞ ¼
X
J

Ufe
J ðxÞdvfeJ ð64Þ

vhðx; tÞ ¼
X
J

Ufe
J ðxÞvfeJ ð65Þ
Note, that Ufe ¼ 0 8x 2 Xmls and Umls ¼ 0 8x 2 Xfe. The integrals in the particle domain are evaluated by a
nodal integration while for the beam elements Gauss point integration is used.
6. Results

6.1. Test setup

We consider two prestressed concrete beams. The first one is of rectangular cross-section. The test setup

and the dimensions of the beam are illustrated in Fig. 7. The beam was loaded according to Fig. 7. It was

prestressed with two tension wires of 7 mm diameter. The upper one was prestressed with a force of 26.25

KN, the lower one with a force of 11.25 KN. The beam failed in bending because of the plastic flow of the

lower reinforcement followed by a failure of the concrete compression zone. Fig. 8 shows a cutout of the

beam after the experiment. Crack number 2 and 3 are the cracks which caused the failure. The material

parameters for both beams can be found in Section 3.

The test setup for the second beam is similar to the first one and can be found in Fig. 9. In contrast to the
first beam, the second one is of I-cross-section. The beam has two tension wires of 12 mm diameter at the
Fig. 7. Test setup of beam I.



Fig. 8. Beam I after the experiment.

Fig. 9. Test setup of beam II.
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lower flange which were prestressed each with a force of 80 KN. The diameter of the upper reinforcement is

10 mm. It was only necessary for the transportation of the beam. The beam failed suddenly because of a

combined shear/pullout failure as illustrated in Fig. 10. Crack number 6 caused the failure. It is sloped with

38.6� against the longitudinal axis. At the left hand end of the structure, the pullout failure can be observed.

The lower flange was completely destroyed. Finally, it should be mentioned that both beams were loaded by

a displacement controlled approach. A detailed description about the experiments can be found in Eibl et al.
(2001).
6.2. Comparison of the numerical computation with the experiments

The results are compared in terms of the crack patterns, failure mechanisms and the load mid dis-

placement curves. Both beams are discretized in two dimensions. Plane stress conditions are assumed. The

prestressing is modeled via a temperature loading case of the tension wires that the stresses measured in the

experiments are obtained. In other words, the tension wire is shortened by cooling down. The strains are

computed by � ¼ atDT where at is the thermal expansion coefficient which is 1 · 10�5/C for steel and DT is

the temperature difference, which is negative in our case. The contraction of the tension wire transmits the

prestressing forces in the concrete. In the experiments, we first prestressed the tension wires, then concreted



Fig. 10. Beam II after the experiment.
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the beams and transmitted the prestressing forces in the concrete after the desired compressive strength
(¼ 44 N/mm2) was obtained. Because of the contraction of the concrete, the prestressing forces decreased.

To receive the appropriate, i.e. measured, prestressing forces at the time of the experiment, different

temperatures were tried out in the numerical simulation. Fig. 11 shows the stresses in the tension wires for

beam I in longitudinal direction a short time before the experiment and at the prestressing loading case in

the numerical simulation. It can be seen that it takes almost 80 cm in the experiment to transmit the forces

into the concrete which is compared to other experiments (see e.g. Idda, 1999 or Eibl et al., 2001) quite

large. The transmission length in the computation is 30 cm according to the EUROCODE, 1993 and the

experiments by Idda (1999).
Since the topology and load of our beams are symmetrically, we would also obtain a symmetric crack

pattern in our computation which does not match well with experimental observations. Therefore, the

compressive and tensile strength of the concrete is varied in the beam. We modeled the scatter in strength in

the constitutive model by multiplying the stresses in our damage model with a factor a, which scatters

around the average of 1.0. According to experimental data (see e.g. Harada and Shinozuka, 1988 and Mirza

et al., 1979), a log normal distribution was chosen which scatters as just mentioned around an average of 1
Fig. 11. Stresses in the tension wires for the loading case �prestressing� of the experiment and the computation.
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with a standard deviation of 20%. To produce the random numbers, the NAG library of FORTRAN was

used. It has to be mentioned that the results depend on the spatial correlation, but the same effects can be

observed in experiments (see e.g. Eibl et al., 2001). Approximately 270,000 particles are used in the analysis.

All material parameters for the simulations as well as a detailed description of the numerical models can be
found in Eibl et al. (2001).

6.2.1. The bending failure of beam I

Fig. 12 compares the crack pattern of the experiments with the one of the numerical analysis. The

calculation produced more cracks than the experiment. The second crack on the left hand side caused the

failure in the compressive zone of the concrete in the experiment. The experimental and �numerical� load
displacement curves are illustrated in Fig. 14 and show a good agreement. The computation is stopped

before the reinforcement reaches the failure criterion since the calculation is getting unstable. In the ex-

periment, the mid displacement due to failure is smaller than in the calculation. If decreasing the effective

plastic strain due to failure for the reinforcement, the curves would coincide better, but we have chosen

�p;eff ¼ 0:2 according to the specifications of the tension wire producer. The load displacement curve in the
experiment does not begin in the origin because of the prestressing loading case. In view of the large

experimental scatter, the computation can reproduce the experimental behavior pretty well.

6.2.2. The shear/anchorage failure of beam II

As mentioned in Section 6.1, the second beam is of I-cross-section. It is also discretized in two di-

mensions, plane stress. In particle methods, when summing over the neighbor particles, particles from the

flange contribute to the sums of particles in the web and vica versa. Because of the large differences in

thickness, this might cause errors. We have not done any arrangements, but when choosing the domain of

influence as small as possible, errors might be kept small. As we see later, the complete failure mechanism

cannot be captured.

Fig. 13 shows the crack pattern of the experiment and the computation. The shear crack in the exper-

iment is closer to the support than in the computation, but a large scatter is observed in the experiments (see
Eibl et al., 2001). The shear crack in the experiment has an angle of approximately 38� against the lon-

gitudinal axis. The shear crack in the calculation has an angle of 40� against the global x-axis. While in the

experiment a combined shear pullout failure is observed, the numerical simulation is able to capture only

the shear failure, illustrated by the large damage zone close to the support. The complete failure mechanism
Fig. 12. Comparison of the crack pattern of the experiment with the numerical analysis for beam I.

Fig. 13. Comparison of the crack pattern of the experiment with the numerical analysis for beam II.
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Fig. 14. Load mid displacement curve of beam I.
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Fig. 15. Load mid displacement curve of beam II.
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cannot be reproduced. It might be caused by the large changes in the thickness between the flange and the

web. In a 2D (plane stress) analysis, the thickness is assigned to the particles. To capture the complete

failure mechanism, a full 3D computation is needed where more particles are necessary to discretize the

beam also in the thickness direction. The load displacement curves are compared in Fig. 15 and show a

good agreement. The maximum tensile stress of the reinforcement is not reached in the numerical analysis
which matches well with the observation in the experiment. Since we are not able to reproduce the pullout

failure, the diplacements due to failure are higher in the computation, too. Instead, a crack propagates

parallel to the x-axis at the transition between the flange and the web.
7. Conclusions

We have proposed a method for modeling prestressed concrete beams within the framework of a nu-
merical analysis. The concrete is discretized with particles while elements are chosen for the reinforcement.
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A continuum based combined damage plasticity model is used for the concrete, but in future, discrete crack

models will be applied to benefit from the meshfree character. A bond coupling between particles and

elements is proposed so that no interface elements are needed.

The approach is applied to two concrete beams with different failure mechanisms. It is shown that our
approach can capture the experimental load displacement curves quite well. Also the crack pattern is re-

produced well by the numerical analysis. The model is able to capture different failure mechanisms, a

bending failure and a shear failure. For structures of constant thickness, a two dimensional plane stress

analysis seems to be sufficient. However, for the second beam, the complete experimental failure, a com-

bined shear/pullout behavior, cannot be reproduced. This might be caused by the two dimensional plane

stress assumption. When large changes in thickness occur, a two dimensional model cannot reproduce the

appropriate complete failure mechanism. A discrete crack model for the concrete and enhancements in the

bond model might improve the results. Meshfree methods are well suited for such kind of problems since
boundaries and particles can be added and removed quite easily. A full three dimensional simulation will

probably capture the complete failure mechanism. These will be a topic of future investigations.
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